Analysis of Ammonia, Phosphate and Nitrate Levels of Rovers in the Senepis Peat Forest Area, Riau, Indonesia
Keywords:
water quality, ammonia, phosphate, nitrate, peat forest, Senepis, eutrophicationAbstract
The Senepis Peat Forest Area in Riau is a tropical ecosystem that plays a crucial role in carbon storage, hydrological regulation, and biodiversity. However, pressures on river water quality in this area have increased due to land use changes. This study aims to analyze the concentrations of key nutrients, including ammonia (NH₃-N), phosphate (PO₄³⁻), and nitrate (NO₃⁻), at various river and water points in the Senepis area during 2017 and 2018. Sampling was conducted at 12 locations, including upstream and downstream points of four main rivers (Senepis, Sinaboi, Nyamuk, and Teluk Dalam), a logging block well, a kampong canal, and rainwater. Laboratory analysis was performed using spectrophotometric methods in accordance with SNI standards for each parameter. The results show that in 2017, phosphate concentrations ranged from 0.301 to 1.263 mg/L, ammonia from 0.030 to 0.534 mg/L, and nitrate from 0.342 to 0.392 mg/L. In 2018, phosphate concentrations decreased (0.0053–0.3292 mg/L), while ammonia (0.0750–0.3468 mg/L) and nitrate (0.1394–0.9668 mg/L) levels increased significantly, particularly in locations close to anthropogenic activities. These findings indicate spatial and temporal dynamics in nutrient levels, which could potentially trigger eutrophication and degrade water ecosystem quality. This data is essential as a basis for water quality management and the sustainable protection of tropical peatland ecosystems.
References
[1] Page, S. E., Rieley, J. O., & Banks, C. J. (2011). Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17(2), 798–818.
[2] He, Y., et al. (2019). Eutrophication model driven by light and nutrients condition. Environmental Science and Pollution Research, 26(1), 1-10. Jakarta.
[3] Lestari, A., Nugroho, T. A., & Wulandari, D. (2021). Nutrient loading and water quality degradation in peatland watersheds. Environmental Research and Development Journal, 25(2), 105–112.
[4] Bijay-Singh & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3, 518.
[5] Effendi, H. 2003. Telaah Kualitas Air Bagi Pengelolaan Sumber Daya dan Lingkungan Fakultas Perikanan Universitas Brawijaya. Malang. Hal.14-41.
[6] Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100 (1-3), 179-196.
[7] WHO. (2017). Ammonia in Drinking-water: Background Document for Development of WHO Guidelines for Drinking-water Quality. World Health Organization, Geneva.
[8] Prasetyo, L. B., Rahayu, D. T., & Kusuma, D. (2022). Impact of nitrate pollution in rural watersheds. Journal of Water and Environment, 14(3), 215–224.
[9] García, M. (2021). World eutrophic pollution of lake and river ecosystems. Environmental Research, 200, 111-120.
[10] Wetzel, R. G. (2001). Limnology: Lake and River Ecosystems (3rd ed.). Academic Press.
[11] Dodds, W. K., & Smith, V. H. (2016). Nitrogen, phosphorus, and eutrophication in streams. Inland Waters, 6(2), 155-164.
[12] Romero, E., Garnier, J., & Billen, G. (2013). Nutrient dynamics and eutrophication assessment in the tropical river system of Saigon–Dongnai (southern Vietnam). Science of The Total Environment, 408(20), 4562-4570.
[13] Kementerian Lingkungan Hidup dan Kehutanan (KLHK). (2021). Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup. Jakarta: KLHK.
[14] BSN. (2005). SNI 06-6989.31-2005: Metoda Uji Fosfat dengan Asam Askorbat dan SnCl₂. Jakarta: Badan Standardisasi Nasional.
[15] BSN. (2005). SNI 06-6989.29-2005: Metoda Uji Amoniak dengan Reagen Nessler. Jakarta: Badan Standardisasi Nasional.
[16] BSN. (2005). SNI 06-6989.30-2005: Metoda Uji Nitrat dengan Reduksi Kolom Kadmium. Jakarta: Badan Standardisasi Nasional.
[17] Boyd, C. E. (2015). Water Quality: An Introduction (2nd ed.). Springer.
[18] Chapman, D. (1996). Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring. 2nd ed. E & FN Spon.
[19] Odum, E. P., & Barrett, G. W. (2005). Fundamentals of Ecology (5th ed.). Brooks/Cole.
[20] Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (2003). Chemistry for Environmental Engineering and Science (5th ed.). McGraw-Hill.
[21] Connell, D. W., & Miller, G. J. (2006). Chemistry and Ecotoxicology of Pollution. John Wiley & Sons.
[23] Lestari, D., & Putra, R. (2019). Dampak cemaran nitrat terhadap kesehatan masyarakat. Jurnal Kesehatan Masyarakat, 14(1), 45–52.
[24] Goldman, C. R., & Horne, A. J. (1983). Limnology. McGraw-Hill.
[25] Kurniawan, E. (2020). Strategi pengelolaan kualitas air di lahan gambut berbasis pendekatan ekosistem. Jurnal Ilmu Lingkungan, 18(2), 123–135.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sefni Hendris, Irwan Effendi, Bintal Amin, Rizki Oktavian, Dodi Sukma, Al Muzafri (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.